
AD-A255 858

NASA Contractor Report 189696

ICASE Report No. 92-41

ICASE
SEP 3 0 1992

INVISCID VORTEX MOTIONS IN WEAKLY

THREE-DIMENSIONAL BOUNDARY LAYERS
AND THEIR RELATION WITH INSTABILITIES
IN STRATIFIED SHEAR FLOWS

Nicholas D. Blackaby
Meelan Choudhari

Contract Nos. NASI-18605 and NASI-19480
August 1992

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

NAA
National Aeronautics and
Space Administration

,Angley Research Center 92-26090
Hampton, Virginia 23665-5225 ~\~lI\I\\1-(\ ~

top z& 1L1iii



INVISCID VORTEX MOTIONS IN WEAKLY THREE-DIMENSIONAL

BOUNDARY LAYERS AND THEIR RELATION WITH

INSTABILITIES IN STRATIFIED SHEAR FLOWS.

Nicholas D. Blackaby*
Department of Mathematics ,_

• < i V-' or

University of Manchester -z a F .

Manchester, M13 9PL, UK. ,]

andl.74

Meelan Choudhari** "

High Technology Corporation AvI V Ili_ coas

P.O. Box 7262 D, ,. and/or
D i t !Special

Hampton, VA 23666.

Abstract
DTIC QUALITY INSPECTED 3

In this report we consider the inviscid instability of three-dimensional boundary-layer

flows with a small crossflow over locally concave or convex walL, along with the inviscid

instability of stratified shear flows. We show how these two problems are closely related

through the forms of their governing equations. A proposed definition of a generalised

Richardson number for the neutrally stable inviscid vortex motions is given. hIplications

of the similarity between the two problems are discussed.
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§1. Introduction

In a recent paper, Bassom & Hall (1991) have considered vortex instabilities in three-

dimensional boundary layers and the relationship between G*rtler vortices (G*rtler, 1940)

and crossflow vortices (Gregory et al. 1955). Meanwhile the studies of Hall & Morris (1991)

and Hall (1992) have shown that there is also much similarity between the G(5rtler vortex

problem and that for the streamwise vortices in heated-wall boundary layers. Our concern

here is with illustrating the close relationship between the inviscid vortex instabilities.

considered by Bassom & Hall (1991), and those of stratified shear flow, first considered by

Goldstein (1931) and Taylor (1931).

A detailed review of the previous studies related to the G6rtler vortex problem can be

found in many of the recent papers concerned with this instability. Rather than repeat such

material, we refer the reader to the introduction of Bassom & Hall (1991) and references

therein. The Reynolds number R of the flow (to be defined in the next section) will be taken

to be large; further, our asymptotic analysis will be restricted to large G6rtler numbers

G (also to be defined in the next section). The latter assumption is the more significant,

restricting the theory to regions of high (local) wall curvature. Bassom &,- Hall (1991)

have shown that in a 3D boundary layer, the inviscid modes rise in significance to become

the most dangerous ones as the amount of crossflow increases. Thus, it is important to

investigate the neutral curve bounding these unstable modes. Moreover, a study of neutral

vortices is also useful towards the weakly nonlinear analyses of the instability development.

The stability of inviscid stratified shear flows has been consideredi many times over the

past sixty years. This classical problem of hydrodynamic stability theory has been used as a

model to consider the stability of atmospheric flows in attempts to explain the phenomena

observed in practice. The model incorporates the two competing effects of a potentially

unstable shear flow and a stabilising density distribution. The governing equation for the

linear instability of such flows is similar to the celebrated Rayleigh's equation, but has the

extra buoyancy term which is proportional to a physical paramneter generally rferred to

as the Richardson number.

The rest of this article is divided as follows. In tle next section, wC outline the

derivation of thu Bassom-Htall equation governing the stability of inviscid vortices in 3D
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boundary layers with weak, viz., O(G/Re)'/ 2 . crossflows. As shown by Bassom and Hall

(1991), the G6rtler vortex structures cannot persist if the magnitude of the crossflow

exceeds this level. In §3 we discuss the stability properties for both locally concave and

convex walls. This is followed by a brief discussion of the numerical methods that were

employed in these calculations. In the final section, we begin by outlining the inviscid

stability theory for stratified shear flows. We then go on to show their close relationship

to the centrifLgal-crossflow driven instabilities, or the GSSW (G6rtler-Gregory-Stuart-

Walker) modes as we propose to call them in §4.

§2. Inviscid vortex instabilities in 3D boundary layers with weak crossflows.

We consider the flow of a viscous incompressible fluid of kinematic viscosity v over a

wall of variable curvature r' X(x/L). Here r0 and L are typical length scales associated

with the radius of curvature of the wall and the downstream development of the boundary-

layer flow, respectively. Denoting by Uo the free-stream speed sufficiently far from the

wall. we define the Reynolds number Re and the G6rtler number G by

Re U L and G = -- Re/ (2.1a, b)

2L 1"202lnb
V7,

where we restrict our attention to flows where Re > G > 1. Next, the dimensionless

coordinates

X = x/L, Y = Re / 2 (y/L), Z = Re' 12 (Z/L) (2.2a - c)

are introduced and the boundary layer velocity and pressure expanded in the form

u =U" (Q + eUOE +** Re-/ 2 [v ± eG" 2 VoE] +. , R-' 2 G 2 [Au? + eIVOE] +

P) + Re- GPoE + , (2.3a - d)

where

E = exp(iaZ + G'1 J (13 + .)d.r), (2.4)

and e is the nondimensional amplltuld, of tbe vortex di,;tIIrbance. IIcrt .If', ,111 J)

correspond to the base three-dimensional 1)oundary la er. whilst U0, V0. TIV and P are the

respective disturbance functions.



The above scales and expansions lead to the equation

(tuit + Aziat) 2(Vo yy - a2 Vo) - (3u + Aia&',)(i3ayy + Aiauyy)Vl) + a2 Xuay10 = 0, (2.5)

governing the spatial instability of the base flow to steady streamwise inviscid vortices. This

equation was first derived by Basson & Hall (1991). Together with the usual boundary

conditions (V0 -+ 0 as Y --* 0, oc), it constitutes an eigenproblem for the spatial growth rate

13r (the real part of /1) in terms of the scaled wavenumnber a, the scaled crossflow parameter

A and the local wall curvature X. As noted by the above authors, the problem is a localised

one and this enables the magnitude of x' to be scaled out of the problem; thus, we only

need to consider the two cases ( = ±1. The case N = 1 corresponds to a wall with locally-

concave curvature. Such a curvature is usually necessary for the existence of centrifugal

(Taylor-G6rtler) instabilities and was the sole case considered by Bassoni &, Hall (1991).

Here we consider both concave- and convex-curved walls, the latter case being synonymous

with the choice X = -1. For a discussion concerning the technological relevance of convex

curvature, the reader is refered to Bandyopadhvay (1990). The generalisation of equation

(2.5) to compressible and hypersonic boun(lary-layer flows has been studied by Dando

(1992) and Fu & Hall (1992), respectively.

Following Bassom & Hall (1991), for a typical base boundary-layer flow, we consider

the case of a self-similar Falkner-Skal-Cooke boundary layer with a value of 1/2 for the

Hartree parameter. Then, fi and u)i are given by i = f'(Y) and Pb g(Y), where f and g

satisfy

f f+ +-(1- f 2)=0 f(0)=f(0)=0, .f(c)=1,
If

g + fg =0, g(O) =0, g(oc)= 1. (2.6a, b)

The numerical solution of (2.5), plus that of (2.6), is considered in the next section.

§3. Numerical results of the Bassom-Hall equation for both locally concave

and convex walls.

Let us first consider the results for a locally concave curvature (\ = 1). Bassoim &

Hall (1991) solved equation (2.5) to obtain amplification rates 3 for several values of a and
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A. Their main concern was the effect of crossflow oi the growth rates and., hence, they did

not attempt to calculate the neutral curve for the inviscid vortices. However, their results

indicate that crossflow has a stabilising effect on the inviscid vortices in the sense that,

for all A > 4.69, there exists a finite band of wavenumbers where the first mode is stable.

In our calculations, we also considered the next 'most dangerous' mode and found that it

cuts out for a different band of wavenumbers, i.e., the flow is actually unstable for some of

the wavenumnbers where the first mode is stable. This point was noted independently by

Dando (1992) who shows that a consideration of the higher modes is especially inlportant

for compressible flows.

In figure 1 we present the neutral curves for the first two modes; it should be noted

that unlike most neutral curves, the flow is unstable to its associated miode outside of

the curve rather than inside. The right hand branch of the neutral curve for each mode
2 3

has an asymptote of a - A (with /3 - A )) as A --4 oc, as suggested by Bassom and

Hall (1991). Therefore, the neutral vortices shrink in their spanwise as well as streanwise

wavelengths as the crossflow parameter is increased. It was also found that the critical

layer position (where 3ift + Aat = 0) progressively shifts towards the wall as A --+ o, with

the vortices aligning themselves with the local flow direction in this region. In other words,

the orientation of the vortices is such that /i y(O) + Aawy(O) = 0, which matches with the

small wavenumnber asymptote in the viscous node region considered by Basson and Hall

(1991). The left hand branch, on the other hand, tends to a constant spanwise wavenumlber

a = 1.305, as A --+ c. This liniit corresponds to the neutral crossflow vorticet, that are

associated with the inflection point of the directional profile, and were first analyzed by

Gregory et. al. (1955). It is natural to expect this kind of limiting behaviour since the

centrifugal forces will have relatively little effect when the crossflow is increased while

keeping the spanwise wavenumber a to be 0(1). For the base flow given by (2.6), the

orientation of these neutral vortices is given by 3i/Aa 0.861.

It is also seen from figure 1 that the mninimum amount of crossflow required to induce

stability in some region or tbP wavenumnber space is smaller in the case of the secoid mode

however, the band of stable wavenunmbers is also much narrower in that case. Another

interesting feature of the second-mode neutral curve is the rapid approach of its left-hand
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branch to the GSW asymptote. In fact. it is seen from figure 1 that, for all raictical

purl)oses, the entire left-hand branch (fron A 4.12 to A --+ oc) may be taken as being

equal to the GSW asymptote. Thus, in summary, we find that for locally concave walls

(\ = 1), an increase in the amount of crossflow renders stability in a progressively broader

range of spanwise wavenlmbers; however, the effect of crossflow on the stability properties

of tifferent modes is quite non-uniform in the wavenuml)er space.

Let us now consider the results for locally-convex curvatures (\ = -1). This case was

not mentioned by Bassom & Hall (1991), Dando (1992) or Fu & Hall (1992) (however in

the latter study the strong curvature of the streamlines of the base flow, i.c., a negative

effective G6rtler nunmber, is considered). This is probably because the above authors were

primarily concerned with the effect of crossflow on the G(rtler (1940) instability, rather

than the effect of curvature on the crossflow instability of Gregory et al (1955). WNe solved

equation (2.5), for X = -1, to obtain amplification rates for several values of A and a. In

figure 2 we present the neutral curve in the A-a plane - note that here, the vortices are

unstable inside the neutral curve, and stable outside. Since convex curvature is stabilizing,

there is no steady instability at A = 0, and the minimum anlount of crossflow required to

induce any steady instability in this case is seen to be A = 6.42. The critical wavenuilber

corresponding to this minimum crossflow is approximately equal to 0.92. Also notice

that in the convex-curvature case, it is the right-hand branch of the neutral curve which

asymptotes to the neutral mode of Gregory et al as A - oo, whereas the left-hand branch

asymptotes to the long-wavelength modes (a -4 0), with the calculations suggesting that

Aa - -13i " constant (- 3.98). In other words, the critical layer corresponding to the

neutral modes along the left-hand-branch moves off to the outer edge of the boundary

layer as A --* oc. Such a limiting behaviour had also been observed earlier by one of us

(MC) in the context of stationary Rayleigh (i. e., pure crossflow) modes in a rotating-disk

boundary layer.

In addition to the neutral curve, figure 2 also illustrates the locus of the wavenumber

locations corresponding to the maximum amplification rate at any fixed value of the cross-

flow paraimeter A (see the dotted curve in figure 2). WXe have also indicated the numerical

values of the spatial amplification rate scaled by the crossflow parameter (i.e., 3r/A) at a
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few selected values of A. One may observe that as A increases beyond a value of 15, this

ratio approaches fairly rapidly to 0.0336, which is the maximum amplification rate for the

crossflow vortices on a surface without any curvature.

It should be clear from the above discussion that, for larger crossflows, the modes of

figures 1 and 2 are essentially the crossflow vortices considered first by Gregory et al (1955).

However, for A = 0(1), their )roperties are governed crucially both by the crossflow and

the wall curvature and hence, we feel that an appropriate terni for them, as well as for their

counterparts above for a locally concave wall (X = 1), might possibly be 'G6rtler- Gregory-

Stuart-Walker' (GGSW) modes. This is how we shall refer to them in the remainder of the

paper. We note that equation (2.5), governing the instability properties of these modes,

could alternatively be derived by considering the effects of wall curvature on the crossflow

modes of Gregory et al (1955).

Since the numerical schemes used to obtain the above results also merit discussion

by virtue of their novelty, a brief description is now provided. Two types of numerical

schemes, both accurate and efficient for this type of calculation, were used. As the neutral

inviscid eigenfunctions are singular at the critical layer, integration in Y has to be along an

indented contour in the complex Y plane. Previous numerical approaches typically used

a small indented contour, on which the mean flow properties were computed using a low

order Taylor expansion about the critical point. In addition to the loss of accuracy in this

procedure, one also needs to shift the position of the contour each time the critical point

moves out of the indented portion of the contour (note that in the present problem, the

critical layer location varies over a large range). However, by integrating the mean flow

equations also on the same contour, (i) one can compute an accurate mean flow on the

grid used for stability calculations, and (ii), one can enlarge the indented portion of the

contour sufficiently so that the grid only needs to be changed very few times during the

calculation of the entire neutral curve (if at all).

One numerical scheme used a fourth order Runge-Kutta scheme and a finite-difference

scheme to compute the mean flow and eigenfnction (respectively) along a contour with a

large triangular indentation above the real axis into the complex plane, whilst the second

approach used was a multi-doiain spectral scheme consisting of two segments along the
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real axis together with a semi-circular contour of arbitrary size above the real axis. To

our knowledge, this is the first multidomain spectral conllutation involving both re al and

complex integration domains. The accuracy of the codes was checked against all exact

analytic solution that exists for the case of a 2D boundary layer, it was foumnd that the

numerical eigenvalues agreed with the analytic ones to six significant figures in the case of

the finite-difference scheme and seven significant figures for the spectral scheme.

§4. Discussion: the connection with the Taylor-Goldstein equation and

stratified shear flows.

In this final section, we illustrate the analogy between the instability problem consid-

ered in the previous sections with that for stratified shear flows. The inviscid instability

of the latter flows is governed by the so-called Taylor-Goldstein equation (Taylor, 1931:

Goldstein, 1931) which we write in the form

(U C)
2

(byy - a2 ) - ( Ly C ! JI/ = 0, (4.1)

where U, /3 are the nondimensional base shear-flow and the varying density across it,

respectively; J is a parameter measuring the influence of the density gradient relative to

the shear of the velocity field; subscript c indicates that the quantities are evaluated at the

critical level, y = y, where (7(y,) = c; i, is the amplitude of the perturbation to the vertical

velocity, whilst a and c are its wavenutmber and wave-speed respectively. Derivations of

this equation can be found, for instance, in the papers by Drazin (1958) andl Miles (1961).

Usually equation (4.1) is solved on the unbounded domain - 0 < y < oc, with a

typical case being that of U tanh(y) and .3 y or tanh( y). Together with the boundary

conditions ,(-±oc) = 0, it constitutes an eigenvalue lroblem for c = c(no- .1) or alternatively

a = o(c; J). The important parameter J is known as the (local) Richardson number and

the eigenvalues are strongly dependent on its value.

Like its close relative, Rayleigh's e(luation (.1 = 0). the Taylor- Goldstein equation

(4.1) is singular at the critical level y = y.,. However. the singularity is stronger: note that

the coefficient of the highest derivative of f, has a double zero at y = y,. Miles (1961) has

derived several theorems concerning solution properties of the Taylor -Goldstein equation;
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in )articular, (i) that it possesses no unstable solutions for .J > 1/4. and (ii) that th

neutral eigenfunctions are proportional to just one of the associated Frobeniiis solutions .

-, (U - ( (1 - ).) (4.2)

near the critical level. Note that in atmosl)heric flow applications .1 is usually considere(d

to be positive (stable stratification) but that in aerodynamical applications it will usually

be negative, i.e., as for the boundary layer flow over a heated plate considered recently

by Hall & Morris (1991) and Hall (1992) where buoyancy effects are shown to be strongly

destabilising.

Let us now return to equation (2.5) governing inviscid vortex instabilities in 3D bound-

ary layer flows over highly-curved walls. It is immediately clear from a comparison of

equations (2.5) and (4.1) that equation (2.5) has (as first deduced and pointed out to

the authors by Professor P. Hall: private communication. 1991) essentially the forin of

the Taylor-Goldstein equation: note that, in particular, both equations are singular at a

critical level where the coefficient of the highest derivative has a double zero. Hence the

theorems of Miles (1961) are directly applicable to the Bassom -Hall equation (2.5).

It is very easy to derive ail analogue of the local Richardson numel)r, J. for the inviscid

vortex (GGSW) instabilities in 3D boundary layers. A quick inspection of equation (2.5).

in the neighbourhood of the critical level, indicates that

.i - \1 X,'61 (4.3)Ob,+ aw';) 2

is the appropriate definition/generalisation. Here 3i represents the imaginary part of 3.

hnmediately, we see that

sgn(J) = -sg77(X), (4.4)

i.e., continuing the analogy, we see that convex wall curvature (X < 0) corresponds to

stabilising density stratification; whereas concave wall curvature (X > 0) corresponds to

destabilising density stratification. Thus, (at least) two seemingly unrelated stability pro)-

hems of classical fluid mechanics are in fact very closely related in a theoretical sense. le

remark that the solution properties (for J > 0) of the Taylor-Goldstein equation (see

s



Drazin, 1958) would have motivated a study of the Bassom Hall equation (2.5) for X z -1.

had we not already done so!

Once -neutral values' for the GGSW modes (X = ±1) are calculated, it is very simple

to calculate the associated (generalised) Richardson numbers J1 using (4.3), as well as the

phase jump (p say) of the linear neutral eigensohtion across the critical level (1,+ - Yr-,

which is related to 1 via

S=-,77(1 ±- v'i-- 4 4.2. (4.5a)

The corresponding behaviour of the eigensolution in the vicinity of the critical level is

given by

V0 , (Y - y )(1±v-4J)/2 (4.5b)

Note that the relevant choice of sign in equations (4.5a,b) must, in general, be deduced

from an inspection of the numerically calculated eigenfulctions. For locally concave walls

(J < 0) we found that the minus sign was always appropriate. In other words, the phase

shift 0 is always positive in this case, but the eigenfunction becomes unbounded at the

critical level. This appears to be the first example in hydr,_,dynamic stability theory where

the vertical velocity eigenfunction does not have a finite norm in the £, space. The minus

sign is also appropriate when the wall is locally convex (,X = -1, J > 0), but only for

roughly the right half (a > 0.84) portion of the neutral curve in figure 2. The fact that this

value is rather close to the critical wavenumber (a = 0.92) in figure " ,- purely coincidental.

For wavenumbers smaller than 0.84, the '+' sign wa.- found to be appropriate. Of course,

since J > 0 in the convex-wall case, the eigenfunction always remains bounded along the

neutral curve, irrespective of whether the plus or the minus sign is appropriate in (4.5ab).

In figure 3, we present a unified plot of the neutral curve in both the concave- and

convex-curvature cases in the 6 - a and, equivalently, in the J - a plane. Note that

the portion from each of the b and J curves with a < 1.305 corresponds lo ( = -1,

with the remaining one (a > 1.305) being related to the first mode for X = 1. The link

between these two portions, viz., a = 1.305, corresponds to the neutral wavenumber of "ie

crossflow vortices, i.e., the limit A -- oc, considered by Gregory et al in 1955. As alluded to

previously, it is not surprising that the curvature will have littl influence on the solutions

of the Bassom-Hall equation in this p)articular limit, and accordingly. one finds that both
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curves are (01ti110115 at t his waveiiiiil )er. WXhat Is perhiaps moi~l 11e' :g Is t'i t thle

sqlopfc.q -)f the grap)hs airc alo c (out iill( oius t here. This inidicates that tw'o seeiigly phiysically

(hiflCreiit jprolleiiis \ 1-( re11 fact tN\?( halves* of t he samle proh leii InI a mnat hemlatical

sese.ent ! cIIICiiliectc(I throughfl the A x: l'ir~it (or. alterive.truh 135

figures 1 and 2) . It also appc~lrs to -onlfirml thLe accuracy of 0111' compu) ted1 numierical

solutionis.

Note that the( shape of the .J a~ ( curive infigure 3 isremarkaly siilar to that

ap~pearinig in Drazin's (1958) figuu 2. Moreover, .1 < 1/4 for the GGSWN inodcles. in full

agreement with a theorem of Miles (1961) for the inistab~ilities of stratified shear flows.

()ne may also observe that the value of J1 asvuiil)t te t,,) a finlite -onstanlt ( viz.. -2) as

tihe wavexiunier 1 ('conies la-gu% This Is unlike the usual st- fifi( d. flow probl1)ems ( Drazi

1938. Hazel 1972) where, tyvpically, J1 - -cc as, a -- cc. \\e believe that the limited ranlge

of po.;sl)he R ichardlson inubers for tie neutral GGSNN\ modles is the result of the base

flow being Wall bou'mided, as against thme free shear flows stmiidid uisuially in tbec stratified

flow context. .Ve found that the second mode for \ 1 has J1 values raniginig from

-4 to -7e. although. unfortunately, flie asymphtotic nature of these boundaries could not

1be est anlislied (Ilue to r 1ie conisidlerab le nmiierical diffica lties e11Ciiutered in hligher-mlode

('Oliit atiomis.

Finmally, oine may see from figure 3 that the phlase shift 6 takes all values between

-7,t andl -7. in contrast to mlany other lIiear lpro~h(inis where the phlase~ shift only takes the

value - o 0 depend(in~lg Onl the 7'rescence and( location of so calledl inflectionl )iiits. Ill the

COUiio'v-wall case. titc mnagnitude of the phlase shift and. hence, the (legree of singuilarity

near Y , iiicreases monotonicallv as onle moves from the CS\X asvympitote (60 0) to

the wall-miode asymlptote (6~ = 7) along the neutral curve in figure 1. On the other hiand~.

the phlase shift iii the case of a convex-wail is found to dlecrease from 0 to -,,T as one mnoves

fromn the GSXV asymptote to tuec sinall-wavenunuiber asymptote ili figure 2. Moreover, the

dlegree of singularity in tihe 11(11: ral eigenfunction increases, Inwardl fr"'m both asymptotes.

achiievinig a (I )'> /2 tvype b)ehaviour near aI - .S. where .1 -- 1/4. Since .1 = 1/4

dloes not corresp~ondl to the iiiinmumiiii crossfiow (A =6.42) as mientionedI previously, this

p)articuilar value of tihe Richardson iiumber does not have the kinid of physical signlificai'ce



in the present problem which it has in the stratified-flow context.

§5. Conclusion.

We now finish with a few remarks in conclusion. Bassom & Hall (1991) have shown

that the inviscid instability of weakly three-dimensional boundary layers over concave

curved walls is very closely connected to the crossflow instability of Gregory et al (1955).

We have extended their study to convex-curved walls and have shown that all these in-

stabilities of boundary-layer flows are, moreover, related mathematically to instabilities

of stratified shear flows. Physically, the common feature between these two classes of in-

stabilities is the presence of an inviscid body force which, along with the inertial effects

associated with the shear flow, can have a profound impact on the stability of the flow.

This body force corresponds to the centrifugal force due to surface curvature in the former

case, whilst it is induced by the density stratification in the case of the latter class of flows.

The effects of this body force relative to that of the shear-flow instability can always be

characterized in terms of some suitable analogue of the Richardson number. The proposed

form for this generalized Richardson number flr the GSSW modes is given by equation

(4.3). It would be very simple indeed to 'doubly' generalise this definition to compressible

boundary-layer flows and boundary-layer flows over heated plates.

The closeness between the two problems also suggests that ideas and theories from

the many studies of stratified shear flows (many of which, themselves, are adaptations

from the corresponding ideas and theories for homogeneous shear flows) can be applied to

future studies concerning the GGSW modes, involving, for instance, their weakly and/or

fully nonlinear evolution subsequent to the linear growth stage. Another aspect that may

warrant further investigation as far as the GGSW modes are concerned is the answer to

the question whether any of these modes are 'absolutely unstable,' since in the corre-

sponding study for stratified shear flows, Lin & Pierrehumbert (1986) do find regions of

'absolute' instability (to date, G6rtler vortex instabilities have generally been found, as

well as observed, to be 'convective' in nature).
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Fig. 1 The neutral curve for the first two modes of stationary

inviscid vortices in the flow over a concave wall.

Here X denotes the scaled crossflow parameter, while a

is the dimensionless wavenumber In the spanwise direction.
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Fig. 2 The neutral curve for the stationary inviscid vortices

in the flow over a concave wall. Here X denotes

the scaled crossflow parameter, while a is the

dimensionless wavenumber in the spanwise direction.

The locus of maximum amplification rate is also indicated

by the dotted curve.
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Fig. 3 Phase jump 0 across the critical layer In the neutral

eigenfunction and the corresponding Richardson number J

as functions of the spanwise wavenumber a. The link

between the concave and convex vail curvatures Is Indicated

by the encircled location, a=1.305.
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